1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
use super::{Tuner, TunerGain, TunerInfo};
use crate::device::Device;
use crate::error::Result;
use crate::error::RtlsdrError::RtlsdrErr;
use log::info;

const R820T_I2C_ADDR: u16 = 0x34;
// const R828D_I2C_ADDR: u8 = 0x74; for now only support the T
const VER_NUM: u8 = 49;
pub const R82XX_IF_FREQ: u32 = 3570000;
const NUM_REGS: usize = 32;
const RW_REG_START: usize = 5; // registers 0-4 are read-only
const NUM_CACHE_REGS: usize = NUM_REGS - RW_REG_START; // only cache RW regs
const MAX_I2C_MSG_LEN: usize = 8;

// Init registers (32 total, first 5 are read-only)
const REG_INIT: [u8; NUM_CACHE_REGS] = [
    0x83, 0x32, 0x75, /* 05 to 07 */
    0xc0, 0x40, 0xd6, 0x6c, /* 08 to 0b */
    0xf5, 0x63, 0x75, 0x68, /* 0c to 0f */
    0x6c, 0x83, 0x80, 0x00, /* 10 to 13 */
    0x0f, 0x00, 0xc0, 0x30, /* 14 to 17 */
    0x48, 0xcc, 0x60, 0x00, /* 18 to 1b */
    0x54, 0xae, 0x4a, 0xc0, /* 1c to 1f */
];

/* measured with a Racal 6103E GSM test set at 928 MHz with -60 dBm
* input power, for raw results see:
* http://steve-m.de/projects/rtl-sdr/gain_measurement/r820t/
*/
const _VGA_BASE_GAIN: i32 = -47;
const GAINS: [i32; 29] = [
    0, 9, 14, 27, 37, 77, 87, 125, 144, 157, 166, 197, 207, 229, 254, 280, 297, 328, 338, 364, 372,
    386, 402, 421, 434, 439, 445, 480, 496,
];
const _R82XX_VGA_GAIN_STEPS: [i32; 16] = [
    0, 26, 26, 30, 42, 35, 24, 13, 14, 32, 36, 34, 35, 37, 35, 36,
];

const R82XX_LNA_GAIN_STEPS: [i32; 16] =
    [0, 9, 13, 40, 38, 13, 31, 22, 26, 31, 26, 14, 19, 5, 35, 13];

const R82XX_MIXER_GAIN_STEPS: [i32; 16] =
    [0, 5, 10, 10, 19, 9, 10, 25, 17, 10, 8, 16, 13, 6, 3, -8];

struct FreqRange {
    freq: u32,       // Start freq, in MHz
    open_d: u8,      // low
    rf_mux_ploy: u8, // R26[7:6]=0 (LPF)  R26[1:0]=2 (low)
    tf_c: u8,        // R27[7:0]  band2,band0
    xtal_cap20p: u8, // R16[1:0]  20pF (10)
    xtal_cap10p: u8,
    xtal_cap0p: u8,
}

const FREQ_RANGES: [FreqRange; 21] = [
    FreqRange {
        freq: 0,
        open_d: 0x08,
        rf_mux_ploy: 0x02,
        tf_c: 0xdf,
        xtal_cap20p: 0x02,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 50,
        open_d: 0x08,
        rf_mux_ploy: 0x02,
        tf_c: 0xbe,
        xtal_cap20p: 0x02,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 55,
        open_d: 0x08,
        rf_mux_ploy: 0x02,
        tf_c: 0x8b,
        xtal_cap20p: 0x02,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 60,
        open_d: 0x08,
        rf_mux_ploy: 0x02,
        tf_c: 0x7b,
        xtal_cap20p: 0x02,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 65,
        open_d: 0x08,
        rf_mux_ploy: 0x02,
        tf_c: 0x69,
        xtal_cap20p: 0x02,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 70,
        open_d: 0x08,
        rf_mux_ploy: 0x02,
        tf_c: 0x58,
        xtal_cap20p: 0x02,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 75,
        open_d: 0x00,
        rf_mux_ploy: 0x02,
        tf_c: 0x44,
        xtal_cap20p: 0x02,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 80,
        open_d: 0x00,
        rf_mux_ploy: 0x02,
        tf_c: 0x44,
        xtal_cap20p: 0x02,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 90,
        open_d: 0x00,
        rf_mux_ploy: 0x02,
        tf_c: 0x34,
        xtal_cap20p: 0x01,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 100,
        open_d: 0x00,
        rf_mux_ploy: 0x02,
        tf_c: 0x34,
        xtal_cap20p: 0x01,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 110,
        open_d: 0x00,
        rf_mux_ploy: 0x02,
        tf_c: 0x24,
        xtal_cap20p: 0x01,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 120,
        open_d: 0x00,
        rf_mux_ploy: 0x02,
        tf_c: 0x24,
        xtal_cap20p: 0x01,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 140,
        open_d: 0x00,
        rf_mux_ploy: 0x02,
        tf_c: 0x14,
        xtal_cap20p: 0x01,
        xtal_cap10p: 0x01,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 180,
        open_d: 0x00,
        rf_mux_ploy: 0x02,
        tf_c: 0x13,
        xtal_cap20p: 0x00,
        xtal_cap10p: 0x00,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 220,
        open_d: 0x00,
        rf_mux_ploy: 0x02,
        tf_c: 0x13,
        xtal_cap20p: 0x00,
        xtal_cap10p: 0x00,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 250,
        open_d: 0x00,
        rf_mux_ploy: 0x02,
        tf_c: 0x11,
        xtal_cap20p: 0x00,
        xtal_cap10p: 0x00,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 280,
        open_d: 0x00,
        rf_mux_ploy: 0x02,
        tf_c: 0x00,
        xtal_cap20p: 0x00,
        xtal_cap10p: 0x00,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 310,
        open_d: 0x00,
        rf_mux_ploy: 0x41,
        tf_c: 0x00,
        xtal_cap20p: 0x00,
        xtal_cap10p: 0x00,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 450,
        open_d: 0x00,
        rf_mux_ploy: 0x41,
        tf_c: 0x00,
        xtal_cap20p: 0x00,
        xtal_cap10p: 0x00,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 588,
        open_d: 0x00,
        rf_mux_ploy: 0x40,
        tf_c: 0x00,
        xtal_cap20p: 0x00,
        xtal_cap10p: 0x00,
        xtal_cap0p: 0x00,
    },
    FreqRange {
        freq: 650,
        open_d: 0x00,
        rf_mux_ploy: 0x40,
        tf_c: 0x00,
        xtal_cap20p: 0x00,
        xtal_cap10p: 0x00,
        xtal_cap0p: 0x00,
    },
];

#[allow(dead_code)]
enum TunerType {
    Radio,
    AnalogTv,
    DigitalTv,
}

#[derive(Debug)]
#[allow(dead_code)]
enum XtalCapValue {
    XtalLowCap30p,
    XtalLowCap20p,
    XtalLowCap10p,
    XtalLowCap0p,
    XtalHighCap0p,
}

#[allow(dead_code)]
const XTAL_CAPACITOR_VALUES: [u8; 5] = [
    0x0b, // XTAL_LOW_CAP_30P
    0x02, // XTAL_LOW_CAP_20P
    0x01, // XTAL_LOW_CAP_10P
    0x00, // XTAL_LOW_CAP_0P
    0x10, // XTAL_HIGH_CAP_0P
];

#[allow(dead_code)]
enum DeliverySystem {
    SysUndefined,
    SysDvbt,
    SysDvbt2,
    SysIsdbt,
}

#[derive(Debug)]
pub struct R820T {
    pub info: TunerInfo,
    regs: [u8; NUM_CACHE_REGS],
    pub freq: u32,
    int_freq: u32,
    xtal_cap_sel: XtalCapValue,
    xtal: u32,
    use_predetect: bool,
    has_lock: bool,
    fil_cal_code: u8,
    init_done: bool,
}

pub const TUNER_ID: &str = "r820t";

pub const TUNER_INFO: TunerInfo = TunerInfo {
    id: TUNER_ID,
    name: "Rafael Micro R820T",
    i2c_addr: 0x34,
    check_addr: 0x00,
    check_val: 0x69,
    // gains: vec![
    //     0, 9, 14, 27, 37, 77, 87, 125, 144, 157, 166, 197, 207, 229, 254, 280, 297, 328, 338, 364,
    //     372, 386, 402, 421, 434, 439, 445, 480, 496,
    // ],
};

impl R820T {
    pub fn new(_handle: &mut Device) -> R820T {
        R820T {
            info: TUNER_INFO,
            regs: REG_INIT,
            freq: 0,
            int_freq: 0,
            xtal_cap_sel: XtalCapValue::XtalLowCap30p,
            xtal: 0,
            has_lock: false,
            init_done: false,
            use_predetect: false,
            fil_cal_code: 0,
        }
    }
}

impl Tuner for R820T {
    // Combined from r820t_init and r82xx_init
    fn init(&mut self, handle: &Device) -> Result<()> {
        // TODO: set different I2C address and rafael_chip for R828D
        self.use_predetect = false;

        // <original>TODO: R828D might need r82xx_xtal_check()
        self.xtal_cap_sel = XtalCapValue::XtalHighCap0p;

        // Initialize registers
        self.write_regs(handle, 0x05, &REG_INIT)?;

        self.set_tv_standard(handle, 3, TunerType::DigitalTv)?;
        self.sysfreq_sel(
            handle,
            0,
            TunerType::DigitalTv,
            DeliverySystem::SysDvbt,
        )?;
        self.init_done = true;
        Ok(())
    }

    fn get_info(&self) -> Result<TunerInfo> {
        Ok(self.info)
    }

    fn get_gains(&self) -> Result<Vec<i32>> {
        Ok(GAINS.to_vec())
    }

    fn read_gain(&self, handle: &Device) -> Result<i32> {
        let mut data: [u8; 4] = [0; 4];
        self.read_reg(handle, 0x00, &mut data, 4)?;
        let gain = ((data[3] & 0x0f) << 1) + ((data[3] & 0xf0) >> 4);
        Ok(gain as i32)
    }

    fn set_gain(&mut self, handle: &Device, mode: TunerGain) -> Result<()> {
        match mode {
            TunerGain::Auto => {
                // LNA
                self.write_reg_mask(handle, 0x05, 0, 0x10)?;
                // Mixer
                self.write_reg_mask(handle, 0x07, 0x10, 0x10)?;
                // Set fixed VGA gain for now (26.5 dB)
                self.write_reg_mask(handle, 0x0c, 0x0b, 0x9f)?;
            }
            TunerGain::Manual(gain) => {
                let mut data: [u8; 4] = [0; 4];
                // LNA auto off
                self.write_reg_mask(handle, 0x05, 0x10, 0x10)?;
                // Mixer auto off
                self.write_reg_mask(handle, 0x07, 0, 0x10)?;

                self.read_reg(handle, 0x00, &mut data, 4)?;

                // Set fixed VGA gain for now (16.3 dB)
                self.write_reg_mask(handle, 0x0c, 0x08, 0x9f)?; //init val 0x08 0x0c works well at 1.7

                let mut total_gain: i32 = 0;
                let mut mix_index: u8 = 0;
                let mut lna_index: u8 = 0;
                for _ in 0..15 {
                    if total_gain >= gain {
                        break;
                    }
                    lna_index += 1;
                    total_gain += R82XX_LNA_GAIN_STEPS[lna_index as usize];

                    if total_gain >= gain {
                        break;
                    }

                    mix_index += 1;
                    total_gain += R82XX_MIXER_GAIN_STEPS[mix_index as usize];
                }
                // Set LNA gain
                self.write_reg_mask(handle, 0x05, lna_index, 0x0f)?;

                // Set mixer gain
                self.write_reg_mask(handle, 0x07, mix_index, 0x0f)?;

                // LNA
                self.write_reg_mask(handle, 0x05, 0, 0x10)?;

                // Mixer
                self.write_reg_mask(handle, 0x07, 0x10, 0x10)?;

                // Set fixed VGA gain for now (26.5dB)
                self.write_reg_mask(handle, 0x0c, 0x0b, 0x9f)?;
            }
        }
        Ok(())
    }

    fn set_freq(&mut self, handle: &Device, freq: u32) -> Result<()> {
        info!("set_freq - freq: {}", freq);
        let lo_freq = freq + self.int_freq;
        info!("set_freq - lo_freq: {}", lo_freq);
        self.set_mux(handle, lo_freq)?;
        self.set_pll(handle, lo_freq)?;

        // TODO: Some extra stuff for the 828D tuner when we support that
        Ok(())
    }

    fn set_bandwidth(&mut self, handle: &Device, bw_in: u32, _rate: u32) -> Result<()> {
        let mut bw: i32 = bw_in as i32;
        const FILT_HP_BW1: i32 = 350_000;
        const FILT_HP_BW2: i32 = 380_000;
        const R82XX_IF_LOW_PASS_BW_TABLE: [i32; 10] = [
            1_700_000, 1_600_000, 1_550_000, 1_450_000, 1_200_000, 900_000, 700_000, 550_000,
            450_000, 350_000,
        ];

        let (reg_0a, reg_0b): (u8, u8) = if bw > 7_000_000 {
            // BW: 8MHz
            self.int_freq = 4_570_000;
            (0x10, 0x0b)
        } else if bw > 6_000_000 {
            // BW: 7MHz
            self.int_freq = 4_570_000;
            (0x10, 0x2a)
        } else if bw > R82XX_IF_LOW_PASS_BW_TABLE[0] + FILT_HP_BW1 + FILT_HP_BW2 {
            // BW: 6MHz
            self.int_freq = 3_570_000;
            (0x10, 0x6b)
        } else {
            self.int_freq = 2_300_000;
            let (reg_0a, mut reg_0b): (u8, u8) = (0x00, 0x80);
            let mut real_bw = 0;

            if bw > R82XX_IF_LOW_PASS_BW_TABLE[0] + FILT_HP_BW1 {
                bw -= FILT_HP_BW2;
                self.int_freq += FILT_HP_BW2 as u32;
                real_bw += FILT_HP_BW2;
            } else {
                reg_0b |= 0x20;
            }

            if bw > R82XX_IF_LOW_PASS_BW_TABLE[0] {
                bw -= FILT_HP_BW1;
                self.int_freq += FILT_HP_BW1 as u32;
                real_bw += FILT_HP_BW1;
            } else {
                reg_0b |= 0x40;
            }

            // Find low-pass filter
            let mut lp_idx = 0;
            // Want the element before the first that is lower than bw
            for (i, freq) in R82XX_IF_LOW_PASS_BW_TABLE.iter().enumerate() {
                if bw > *freq {
                    break;
                }
                lp_idx = i;
            }
            reg_0b |= 15 - lp_idx as u8;
            real_bw += R82XX_IF_LOW_PASS_BW_TABLE[lp_idx];

            self.int_freq -= (real_bw / 2) as u32;
            (reg_0a, reg_0b)
        };

        self.write_reg_mask(handle, 0x0a, reg_0a, 0x10)?;
        self.write_reg_mask(handle, 0x0b, reg_0b, 0xef)?;
        Ok(())
    }

    fn get_if_freq(&self) -> Result<u32> {
        Ok(self.int_freq)
    }

    fn get_xtal_freq(&self) -> Result<u32> {
        Ok(self.xtal)
    }

    fn set_xtal_freq(&mut self, freq: u32) -> Result<()> {
        self.xtal = freq;
        Ok(())
    }

    fn exit(&mut self, handle: &Device) -> Result<()> {
        // If device was not initialized yet don't need to standby
        if !self.init_done {
            return Ok(());
        }
        self.write_regs(handle, 0x06, &[0xb1])?;
        self.write_regs(handle, 0x05, &[0xa0])?;
        self.write_regs(handle, 0x07, &[0x3a])?;
        self.write_regs(handle, 0x08, &[0x40])?;
        self.write_regs(handle, 0x09, &[0xc0])?;
        self.write_regs(handle, 0x0a, &[0x36])?;
        self.write_regs(handle, 0x0c, &[0x35])?;
        self.write_regs(handle, 0x0f, &[0x68])?;
        self.write_regs(handle, 0x11, &[0x03])?;
        self.write_regs(handle, 0x17, &[0xf4])?;
        self.write_regs(handle, 0x19, &[0x0c])?;
        Ok(())
    }
}

impl R820T {
    // Tuning logic

    fn set_mux(&mut self, handle: &Device, freq: u32) -> Result<()> {
        // Get the proper frequency range
        let freq_mhz = freq / 1_000_000;
        // Find the range that freq is within
        let range = {
            let mut r: &FreqRange = &FREQ_RANGES[0];
            for range in FREQ_RANGES.iter() {
                if freq_mhz < range.freq {
                    // past freq, break
                    break;
                }
                // range still below freq, save it and continue iterating
                r = range;
            }
            r
        };

        // Open Drain
        self.write_reg_mask(handle, 0x17, range.open_d, 0x08)?;

        // RF_MUX, Polymux
        self.write_reg_mask(handle, 0x1a, range.rf_mux_ploy, 0xc3)?;

        // TF Band
        self.write_regs(handle, 0x1b, &[range.tf_c])?;

        // XTAL CAP & Drive
        let val = match self.xtal_cap_sel {
            XtalCapValue::XtalLowCap30p | XtalCapValue::XtalLowCap20p => range.xtal_cap20p | 0x08,
            XtalCapValue::XtalLowCap10p => range.xtal_cap10p | 0x08,
            XtalCapValue::XtalHighCap0p => range.xtal_cap0p,
            XtalCapValue::XtalLowCap0p => range.xtal_cap0p | 0x08,
        };
        self.write_reg_mask(handle, 0x10, val, 0x0b)?;
        self.write_reg_mask(handle, 0x08, 0x00, 0x3f)?;
        self.write_reg_mask(handle, 0x09, 0x00, 0x3f)?;
        Ok(())
    }

    fn set_pll(&mut self, handle: &Device, freq: u32) -> Result<()> {
        // Frequency in kHz
        let freq_khz = (freq + 500) / 1000;
        info!("freq (kHz): {}", freq_khz);
        let pll_ref = self.xtal;
        let pll_ref_khz = (self.xtal + 500) / 1000;

        let refdiv2 = 0;
        self.write_reg_mask(handle, 0x10, refdiv2, 0x10)?;

        // Set PLL auto-tune = 128kHz
        self.write_reg_mask(handle, 0x1a, 0x00, 0x0c)?;

        // Set VCO current = 100 (RTL-SDR Blog Mod: MAX CURRENT)
        #[cfg(feature = "rtl_sdr_blog")]
        self.write_reg_mask(handle, 0x12, 0x06, 0xff)?;
        #[cfg(not(feature = "rtl_sdr_blog"))]
        self.write_reg_mask(handle, 0x12, 0x80, 0xe0)?;

        // Test turning tracking filter off
        // self.write_reg_mask(handle, 0x1a, 0x40, 0xc0);

        // Calculate divider
        let vco_min: u32 = 1770000;
        let vco_max: u32 = vco_min * 2;
        let mut mix_div: u8 = 2;
        let mut div_num: u8 = 0;
        while mix_div <= 64 {
            if ((freq_khz * mix_div as u32) >= vco_min) && ((freq_khz * mix_div as u32) < vco_max) {
                let mut div_buf = mix_div;
                while div_buf > 2 {
                    div_buf >>= 1;
                    div_num += 1;
                }
                break;
            }
            mix_div <<= 1;
        }

        let mut data: [u8; 5] = [0; 5];
        self.read_reg(handle, 0x00, &mut data, 5)?;
        // TODO: if chip is R828D set vco_power_ref = 1
        let vco_power_ref = 2;
        let vco_fine_tune = (data[4] & 0x30) >> 4;
        match vco_fine_tune.cmp(&vco_power_ref) {
            std::cmp::Ordering::Greater => div_num -= 1,
            std::cmp::Ordering::Less => div_num += 1,
            _ => (),
        }
        self.write_reg_mask(handle, 0x10, div_num << 5, 0xe0)?;

        let vco_freq = freq as u64 * mix_div as u64;
        info!("vco_freq: {}", vco_freq);
        let nint = (vco_freq / (2 * pll_ref as u64)) as u8;
        info!("nint: {}", nint);
        // VCO contribution by SDM (kHz)
        let mut vco_fra = ((vco_freq - 2 * pll_ref as u64 * nint as u64) / 1000) as u32;

        if nint > ((128 / vco_power_ref) - 1) {
            return Err(RtlsdrErr(format!(
                "[R82xx] No valid PLL values for {freq} Hz!"
            )));
        }
        // Nint = 4 * Ni2c + Si2c + 13
        // Some weird wrap-around stuff here, example cases from original code:
        // nint: 31 ni: 4   si: 2
        // nint: 3  ni: 254 si: 254
        let ni = ((nint as i32).overflowing_sub(13).0 / 4) as u8;
        let si = (nint as i32 - 4 * ni as i32 - 13) as u8;
        info!(
            "ni: {}, si: {}, reg: {}",
            ni,
            si,
            ni.overflowing_add(si << 6).0
        );
        self.write_regs(handle, 0x14, &[ni.overflowing_add(si << 6).0])?;

        // pw_sdm
        if vco_fra == 0 {
            self.write_reg_mask(handle, 0x12, 0x08, 0x08)?;
        } else {
            self.write_reg_mask(handle, 0x12, 0x00, 0x08)?;
        }

        // SDM Calculator
        let mut sdm = 0;
        let mut n_sdm = 2;
        while vco_fra > 1 {
            if vco_fra > (2 * pll_ref_khz / n_sdm) {
                sdm += 32768 / (n_sdm / 2);
                vco_fra -= 2 * pll_ref_khz / n_sdm;
                if n_sdm >= 0x8000 {
                    break;
                }
            }
            n_sdm <<= 1;
        }
        self.write_regs(handle, 0x16, &[(sdm >> 8) as u8])?;
        self.write_regs(handle, 0x15, &[(sdm & 0xff) as u8])?;
        for i in 0..2 {
            // Check if PLL has locked
            self.read_reg(handle, 0x00, &mut data, 3)?;
            if data[2] & 0x40 != 0 {
                break;
            }
            if i == 0 {
                // Didn't lock, increase VCO current
                #[cfg(feature = "rtl_sdr_blog")]
                self.write_reg_mask(handle, 0x12, 0x06, 0xff)?;
                #[cfg(not(feature = "rtl_sdr_blog"))]
                self.write_reg_mask(handle, 0x12, 0x80, 0xe0)?;
            }
        }
        if (data[2] & 0x40) == 0 {
            info!("[R82xx] PLL not locked!");
            self.has_lock = false;
            return Ok(());
        }
        self.has_lock = true;

        // Set PLL auto-tune = 8kHz
        self.write_reg_mask(handle, 0x1a, 0x08, 0x08)?;
        Ok(())
    }

    fn sysfreq_sel(
        &mut self,
        handle: &Device,
        freq: u32,
        tuner_type: TunerType,
        delivery_system: DeliverySystem,
    ) -> Result<()> {
        let mixer_top;
        let lna_top;
        let cp_cur;
        let div_buf_cur;
        let lna_vth_l;
        let mixer_vth_l;
        let air_cable1_in;
        let cable2_in;
        let pre_dect;
        let lna_discharge;
        let filter_cur;

        match delivery_system {
            DeliverySystem::SysDvbt => {
                if (freq == 506000000) || (freq == 666000000) || (freq == 818000000) {
                    mixer_top = 0x14; /* mixer top:14 , top-1, low-discharge */
                    lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
                    cp_cur = 0x28; /* 101, 0.2 */
                    div_buf_cur = 0x20; /* 10, 200u */
                } else {
                    mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
                    lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
                    cp_cur = 0x38; /* 111, auto */
                    div_buf_cur = 0x30; /* 11, 150u */
                }
                lna_vth_l = 0x53; /* lna vth 0.84	,  vtl 0.64 */
                mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
                air_cable1_in = 0x00;
                cable2_in = 0x00;
                pre_dect = 0x40;
                lna_discharge = 14;
                filter_cur = 0x40; /* 10, low */
            }
            DeliverySystem::SysDvbt2 => {
                mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
                lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
                lna_vth_l = 0x53; /* lna vth 0.84	,  vtl 0.64 */
                mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
                air_cable1_in = 0x00;
                cable2_in = 0x00;
                pre_dect = 0x40;
                lna_discharge = 14;
                cp_cur = 0x38; /* 111, auto */
                div_buf_cur = 0x30; /* 11, 150u */
                filter_cur = 0x40; /* 10, low */
            }
            DeliverySystem::SysIsdbt => {
                mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
                lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
                lna_vth_l = 0x75; /* lna vth 1.04	,  vtl 0.84 */
                mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
                air_cable1_in = 0x00;
                cable2_in = 0x00;
                pre_dect = 0x40;
                lna_discharge = 14;
                cp_cur = 0x38; /* 111, auto */
                div_buf_cur = 0x30; /* 11, 150u */
                filter_cur = 0x40; /* 10, low */
            }
            DeliverySystem::SysUndefined => {
                // DVB-T 8M
                mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */
                lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */
                lna_vth_l = 0x53; /* lna vth 0.84	,  vtl 0.64 */
                mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */
                air_cable1_in = 0x00;
                cable2_in = 0x00;
                pre_dect = 0x40;
                lna_discharge = 14;
                cp_cur = 0x38; /* 111, auto */
                div_buf_cur = 0x30; /* 11, 150u */
                filter_cur = 0x40; /* 10, low */
            }
        }
        if self.use_predetect {
            self.write_reg_mask(handle, 0x06, pre_dect, 0x40)?;
        }
        self.write_reg_mask(handle, 0x1d, lna_top, 0xc7)?;
        self.write_reg_mask(handle, 0x1c, mixer_top, 0xf8)?;
        self.write_regs(handle, 0x0d, &[lna_vth_l])?;
        self.write_regs(handle, 0x0e, &[mixer_vth_l])?;

        // Air-IN only for Astrometa
        self.write_reg_mask(handle, 0x05, air_cable1_in, 0x60)?;
        self.write_reg_mask(handle, 0x06, cable2_in, 0x08)?;
        self.write_reg_mask(handle, 0x11, cp_cur, 0x38)?;

        // RTLSDRBLOG. Improve L-band performance by setting PLL drop out to 2.0v
        #[cfg(feature = "rtl_sdr_blog")]
        {
            div_buf_cur = 0xa0;
        }

        self.write_reg_mask(handle, 0x17, div_buf_cur, 0x30)?;
        self.write_reg_mask(handle, 0x0a, filter_cur, 0x60)?;

        // Set LNA
        if !matches!(tuner_type, TunerType::AnalogTv) {
            // LNA TOP: lowest
            self.write_reg_mask(handle, 0x1d, 0, 0x38)?;
            // 0: normal mode
            self.write_reg_mask(handle, 0x1c, 0, 0x04)?;
            // 0: PRE_DECT off
            self.write_reg_mask(handle, 0x06, 0, 0x40)?;
            // agc clk 250hz
            self.write_reg_mask(handle, 0x1a, 0x30, 0x30)?;

            // write LNA TOP = 3
            self.write_reg_mask(handle, 0x1d, 0x18, 0x38)?;

            /*
             * write discharge mode
             * FIXME: IMHO, the mask here is wrong, but it matches
             * what's there at the original driver
             */
            self.write_reg_mask(handle, 0x1c, mixer_top, 0x04)?;
            // LNA discharge current
            self.write_reg_mask(handle, 0x1e, lna_discharge, 0x1f)?;
            // agc clk 60hz
            self.write_reg_mask(handle, 0x1a, 0x20, 0x30)?;
        } else {
            // PRE_DECT off
            self.write_reg_mask(handle, 0x06, 0, 0x40)?;
            // write LNA TOP
            self.write_reg_mask(handle, 0x1d, lna_top, 0x38)?;

            /*
             * write discharge mode
             * FIXME: IMHO, the mask here is wrong, but it matches
             * what's there at the original driver
             */
            self.write_reg_mask(handle, 0x1c, mixer_top, 0x04)?;
            // LNA discharge current
            self.write_reg_mask(handle, 0x1e, lna_discharge, 0x1f)?;
            // agc clk 1Khz, external det1 cap 1u
            self.write_reg_mask(handle, 0x1a, 0x00, 0x30)?;
        }
        self.write_reg_mask(handle, 0x10, lna_discharge, 0x04)?;
        Ok(())
    }

    fn set_tv_standard(&mut self, handle: &Device, _bw: u32, tuner_type: TunerType) -> Result<()> {
        /* BW < 6 MHz */
        let if_khz = 3570;
        let filt_cal_lo = 56000; /* 52000->56000 */
        let filt_gain = 0x10; /* +3db, 6mhz on */
        let img_r = 0x00; /* image negative */
        let filt_q = 0x10; /* r10[4]:low q(1'b1) */
        let hp_cor = 0x6b; /* 1.7m disable, +2cap, 1.0mhz */
        let ext_enable = 0x60; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */
        let loop_through = 0x01; /* r5[7], lt off */
        let lt_att = 0x00; /* r31[7], lt att enable */
        let flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */
        let polyfil_cur = 0x60; /* r25[6:5]:min */

        // Initialize register cache
        self.regs.copy_from_slice(&REG_INIT[0..NUM_CACHE_REGS]);

        // Init Flag & Xtal_check Result (inits VGA gain, needed?)
        self.write_reg_mask(handle, 0x0c, 0x00, 0x0f)?;

        // Version
        self.write_reg_mask(handle, 0x13, VER_NUM, 0x3f)?;

        // for LT Gain test
        if !matches!(tuner_type, TunerType::AnalogTv) {
            self.write_reg_mask(handle, 0x1d, 0x00, 0x38)?;
        }
        self.int_freq = if_khz * 1000;

        /* Check if standard changed. If so, filter calibration is needed */
        /* Since we call this function only once in rtlsdr, force calibration */
        let need_calibration = true;
        if need_calibration {
            for _ in 0..2 {
                // Set filt_cap
                self.write_reg_mask(handle, 0x0b, hp_cor, 0x60)?;
                // set cali clk = on
                self.write_reg_mask(handle, 0x0f, 0x04, 0x04)?;
                // X'tal cap 0pF for PLL
                self.write_reg_mask(handle, 0x10, 0x00, 0x03)?;

                self.set_pll(handle, filt_cal_lo * 1000)?;

                // Start trigger
                self.write_reg_mask(handle, 0x0b, 0x10, 0x10)?;
                // Stop trigger
                self.write_reg_mask(handle, 0x0b, 0x00, 0x04)?;

                // Check if calibration worked
                let mut data: [u8; 5] = [0; 5];
                self.read_reg(handle, 0x00, &mut data, 5)?;
                self.fil_cal_code = data[4] & 0x0f;
                if self.fil_cal_code != 0x0f {
                    break;
                }
                // Narrowest
                if self.fil_cal_code == 0x0f {
                    self.fil_cal_code = 0;
                }
            }
        }
        self.write_reg_mask(handle, 0x0a, filt_q | self.fil_cal_code, 0x1f)?;

        // Set BW, Filter_gain, and HP corner
        self.write_reg_mask(handle, 0x0b, hp_cor, 0xef)?;

        // Set Img_R
        self.write_reg_mask(handle, 0x07, img_r, 0x80)?;

        // Set filt_3dB, V6MHz
        self.write_reg_mask(handle, 0x06, filt_gain, 0x30)?;

        // Channel filter extension
        self.write_reg_mask(handle, 0x1e, ext_enable, 0x60)?;

        // Loop through
        self.write_reg_mask(handle, 0x05, loop_through, 0x80)?;

        // Loop through attenuation
        self.write_reg_mask(handle, 0x1f, lt_att, 0x80)?;

        // Filter extension widest
        self.write_reg_mask(handle, 0x0f, flt_ext_widest, 0x80)?;

        // RF poly filter current
        self.write_reg_mask(handle, 0x19, polyfil_cur, 0x60)?;

        // Original driver stores delivery sys and tuner type, but never uses it again
        Ok(())
    }

    fn _xtal_check(&mut self, handle: &Device) -> Result<u8> {
        let mut data: [u8; 3] = [0; 3];

        // Initialize register cache
        for (i, r) in REG_INIT
            .iter()
            .enumerate()
            .take(NUM_REGS)
            .skip(RW_REG_START)
        {
            self.regs[i] = *r;
        }

        // cap 30pF & Drive Low
        self.write_reg_mask(handle, 0x10, 0x0b, 0x0b)?;
        // set pll autotune = 128kHz
        self.write_reg_mask(handle, 0x1a, 0x00, 0x0c)?;
        // set manual initial reg = 111111;
        self.write_reg_mask(handle, 0x13, 0x7f, 0x7f)?;
        // set auto
        self.write_reg_mask(handle, 0x13, 0x00, 0x40)?;

        // Try several xtal capacitor alternatives
        for cap_val in XTAL_CAPACITOR_VALUES.iter() {
            self.write_reg_mask(handle, 0x10, *cap_val, 0x1b)?;
            self.read_reg(handle, 0x00, &mut data, 3)?;
            if data[2] & 0x40 == 0 {
                continue;
            }

            let val = data[2] & 0x3f;
            if (self.xtal == 16_000_000 && !(23..=29).contains(&val)) || val != 0x3f {
                return Ok(*cap_val);
            }
        }
        Err(RtlsdrErr(
            "Unable to find good xtal capacitor value!".to_string(),
        ))
    }

    /// Write register with bit-masked data
    fn write_reg_mask(&mut self, handle: &Device, reg: usize, val: u8, bit_mask: u8) -> Result<()> {
        let rc = self.read_cache_reg(reg);
        // Compute the desired register value: (rc & !mask) gets the unmasked bits and leaves the masked as 0,
        // and (val & mask) gets just the masked bits we want to set. Or together to get the desired register.
        let applied: u8 = (rc & !bit_mask) | (val & bit_mask);
        self.write_regs(handle, reg, &[applied])
    }

    /// Read register data from local cache
    /// # Panics
    ///     * reg < RW_REG_START
    ///     * reg > NUM_REGS
    fn read_cache_reg(&self, reg: usize) -> u8 {
        assert!(reg >= RW_REG_START); // is assert the best thing to use here?
        let index = reg - RW_REG_START;
        assert!(index < NUM_CACHE_REGS); // is assert the best thing to use here?
        self.regs[index]
    }

    /// Write data to device registers (r82xx_write)
    fn write_regs(&mut self, handle: &Device, reg: usize, val: &[u8]) -> Result<()> {
        // Store write in local cache
        self.reg_cache_store(reg, val);

        // Use I2C to write to device in chunks of MAX_I2C_MSG_LEN
        let mut len = val.len();
        let mut val_index = 0;
        let mut reg_index = reg;
        loop {
            // First byte in message is the register addr, then the data
            let size = if len > MAX_I2C_MSG_LEN - 1 {
                MAX_I2C_MSG_LEN
            } else {
                len
            };
            let mut buf: Vec<u8> = vec![0; size + 1];
            buf[0] = reg_index as u8;
            buf[1..].copy_from_slice(&val[val_index..val_index + size]);
            handle.i2c_write(R820T_I2C_ADDR, &buf)?;
            val_index += size;
            reg_index += size;
            len -= size;
            if len == 0 {
                break;
            }
        }
        Ok(())
    }

    // (r82xx_read)
    fn read_reg(&self, handle: &Device, reg: usize, buf: &mut [u8], len: u8) -> Result<()> {
        assert!(buf.len() >= len as usize);
        handle.i2c_write(R820T_I2C_ADDR, &[reg as u8])?;
        handle.i2c_read(R820T_I2C_ADDR, buf, len)?;
        // Need to reverse each byte...for some reason?
        for b in buf {
            *b = bit_reverse(*b);
        }
        Ok(())
    }

    /// Cache register values locally.
    /// Will panic if reg < RW_REG_START or (reg + len) > NUM_CACHE_REGS + 1
    fn reg_cache_store(&mut self, mut reg: usize, val: &[u8]) {
        assert!(reg >= RW_REG_START);
        reg -= RW_REG_START;
        assert!(reg + val.len() <= NUM_CACHE_REGS);
        self.regs[reg..reg + val.len()].copy_from_slice(val);
    }
}

fn bit_reverse(byte: u8) -> u8 {
    const LUT: [u8; 16] = [
        0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf,
    ];
    (LUT[(byte & 0xf) as usize] << 4) | LUT[(byte >> 4) as usize]
}