1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
use super::{DirectSampleMode, TunerGain};
use crate::device::{
    Device, BLOCK_SYS, BLOCK_USB, DEMOD_CTL, DEMOD_CTL_1, EEPROM_SIZE, GPD, GPO, GPOE, USB_EPA_CTL,
    USB_EPA_MAXPKT, USB_SYSCTL,
};
use crate::error::Result;
use crate::error::RtlsdrError::RtlsdrErr;
use crate::tuners::r820t::{R820T, R82XX_IF_FREQ, TUNER_ID};
use crate::tuners::{NoTuner, Tuner, KNOWN_TUNERS};
use log::{error, info};
use parking_lot::ReentrantMutex;
use std::cell::RefCell;
use std::ops::Deref;

const INTERFACE_ID: u8 = 0;

const DEF_RTL_XTAL_FREQ: u32 = 28_800_000;
const MIN_RTL_XTAL_FREQ: u32 = DEF_RTL_XTAL_FREQ - 1000;
const MAX_RTL_XTAL_FREQ: u32 = DEF_RTL_XTAL_FREQ + 1000;

pub(crate) const FIR_LEN: usize = 16;
const DEFAULT_FIR: &[i32; FIR_LEN] = &[
    -54, -36, -41, -40, -32, -14, 14, 53, // i8
    101, 156, 215, 273, 327, 372, 404, 421, // i12
];

#[derive(Debug)]
pub struct RtlSdr {
    handle: Device,
    i: ReentrantMutex<RefCell<Inner>>,
}

#[derive(Debug)]
struct Inner {
    tuner: Box<dyn Tuner>,
    freq: u32, // Hz
    rate: u32, // Hz
    bw: u32,
    direct_sampling: DirectSampleMode,
    xtal: u32,
    tuner_xtal: u32,
    ppm_correction: u32,
    offset_freq: u32,
    corr: i32, // PPM
    force_bt: bool,
    force_ds: bool,
    _fir: [i32; FIR_LEN],
}

impl RtlSdr {
    pub fn new(handle: Device) -> Self {
        RtlSdr {
            handle,
            i: ReentrantMutex::new(RefCell::new(Inner {
                tuner: Box::new(NoTuner {}),
                freq: 0,
                rate: 0,
                bw: 0,
                ppm_correction: 0,
                xtal: DEF_RTL_XTAL_FREQ,
                tuner_xtal: DEF_RTL_XTAL_FREQ,
                direct_sampling: DirectSampleMode::Off,
                offset_freq: 0,
                corr: 0,
                force_bt: false,
                force_ds: false,
                _fir: *DEFAULT_FIR,
            })),
        }
    }

    pub fn init(&mut self) -> Result<()> {
        self.handle.claim_interface(INTERFACE_ID)?;
        self.handle.test_write()?;
        self.init_baseband()?;
        self.set_i2c_repeater(true)?;

        let inner = self.i.lock();

        inner.deref().borrow_mut().tuner = {
            let tuner_id = match self.search_tuner() {
                Some(tid) => {
                    info!("Got tuner ID {}", tid);
                    tid
                }
                None => {
                    panic!("Failed to find tuner, aborting");
                }
            };
            match tuner_id {
                TUNER_ID => Box::new(R820T::new(&mut self.handle)),
                _ => panic!("Unable to find recognized tuner"),
            }
        };
        // Use the RTL clock value by default
        let x = inner.deref().borrow().xtal;
        inner.deref().borrow_mut().tuner_xtal = x;
        let xf = self.get_tuner_xtal_freq();
        inner.deref().borrow_mut().tuner.set_xtal_freq(xf)?;

        // disable Zero-IF mode
        self.handle.demod_write_reg(1, 0xb1, 0x1a, 1)?;

        // only enable In-phase ADC input
        self.handle.demod_write_reg(0, 0x08, 0x4d, 1)?;

        // the R82XX use 3.57 MHz IF for the DVB-T 6 MHz mode, and
        // 4.57 MHz for the 8 MHz mode
        self.set_if_freq(R82XX_IF_FREQ)?;

        // enable spectrum inversion
        self.handle.demod_write_reg(1, 0x15, 0x01, 1)?;

        // Hack to force the Bias T to always be on if we set the IR-Endpoint bit in the EEPROM to 0. Default on EEPROM is 1.
        let buf: [u8; EEPROM_SIZE] = [0; EEPROM_SIZE];
        self.handle.read_eeprom(&buf, 0, EEPROM_SIZE)?;
        if buf[7] & 0x02 != 0 {
            inner.deref().borrow_mut().force_bt = false;
        } else {
            inner.deref().borrow_mut().force_bt = true;
        }
        // Hack to force direct sampling mode to always be on if we set the remote-enabled bit in the EEPROM to 1. Default on EEPROM is 0.
        if buf[7] & 0x01 != 0 {
            inner.deref().borrow_mut().force_ds = true;
        } else {
            inner.deref().borrow_mut().force_ds = false;
        }
        // TODO: if(force_ds){tuner_type = TUNER_UNKNOWN}
        info!("Init tuner");
        inner.deref().borrow_mut().tuner.init(&self.handle)?;

        // Finished Init
        self.set_i2c_repeater(false)?;
        info!("Init complete");

        self.set_sample_rate(2_000_000)?;
        self.set_center_freq(100_000)?;
        Ok(())
    }

    pub fn get_tuner_gains(&self) -> Result<Vec<i32>> {
        let inner = self.i.lock();
        let r = inner.deref().borrow().tuner.get_gains();
        r
    }

    // TunerGain has mode and gain, so this replaces rtlsdr_set_tuner_gain_mode
    pub fn set_tuner_gain(&self, gain: TunerGain) -> Result<()> {
        let inner = self.i.lock();
        self.set_i2c_repeater(true)?;
        inner.deref().borrow_mut().tuner.set_gain(&self.handle, gain)?;
        self.set_i2c_repeater(false)?;
        Ok(())
    }

    // TODO: set_bias_tee

    pub fn reset_buffer(&self) -> Result<()> {
        self.handle.write_reg(BLOCK_USB, USB_EPA_CTL, 0x1002, 2)?;
        self.handle.write_reg(BLOCK_USB, USB_EPA_CTL, 0x0000, 2)?;
        Ok(())
    }

    pub fn get_center_freq(&self) -> u32 {
        let inner = self.i.lock();
        let r = inner.deref().borrow().freq;
        r
    }

    pub fn set_center_freq(&self, freq: u32) -> Result<()> {
        let inner = self.i.lock();
        if !matches!(inner.deref().borrow().direct_sampling, DirectSampleMode::Off) {
            self.set_if_freq(freq)?;
        } else {
            self.set_i2c_repeater(true)?;
            // TODO: figure out offset_freq, currently never set
            let lo = inner.deref().borrow().offset_freq;
            inner.deref().borrow_mut().tuner.set_freq(&self.handle, freq - lo)?;
            self.set_i2c_repeater(false)?;
        }
        inner.deref().borrow_mut().freq = freq;
        Ok(())
    }

    pub fn set_if_freq(&self, freq: u32) -> Result<()> {
        // Get corrected clock value - start with default
        let rtl_xtal: u32 = DEF_RTL_XTAL_FREQ;
        // Apply PPM correction
        let base = 1u32 << 22;
        let if_freq: i32 = (freq as f64 * base as f64 / rtl_xtal as f64 * -1f64) as i32;

        let tmp = ((if_freq >> 16) as u16) & 0x3f;
        self.handle.demod_write_reg(1, 0x19, tmp, 1)?;
        let tmp = ((if_freq >> 8) as u16) & 0xff;
        self.handle.demod_write_reg(1, 0x1a, tmp, 1)?;
        let tmp = if_freq as u16 & 0xff;
        self.handle.demod_write_reg(1, 0x1b, tmp, 1)?;
        Ok(())
    }

    pub fn get_freq_correction(&self) -> i32 {
        let inner = self.i.lock();
        let r= inner.deref().borrow().corr;
        r
    }

    pub fn set_freq_correction(&self, ppm: i32) -> Result<()> {
        let inner = self.i.lock();
        if inner.deref().borrow_mut().corr == ppm {
            return Ok(());
        }
        inner.deref().borrow_mut().corr = ppm;
        self.set_sample_freq_correction(ppm)?;

        // Read corrected clock value into tuner
        inner.deref().borrow_mut().tuner.set_xtal_freq(self.get_tuner_xtal_freq())?;

        // Retune to apply new correction value
        self.set_center_freq(inner.deref().borrow().freq)?;
        Ok(())
    }

    pub fn get_sample_rate(&self) -> u32 {
        let inner = self.i.lock();
        let r = inner.deref().borrow().rate;
        r
    }

    pub fn set_sample_rate(&self, rate: u32) -> Result<()> {
        let inner = self.i.lock();
        // Check if rate is supported by the resampler
        if rate <= 225_000 || rate > 3_200_000 || (rate > 300000 && rate <= 900000) {
            return Err(RtlsdrErr(format!("Invalid sample rate: {rate} Hz")));
        }

        // Compute exact sample rate
        let rsamp_ratio = (inner.deref().borrow().xtal as u128 * 2_u128.pow(22) / rate as u128) & 0x0ffffffc;
        info!(
            "set_sample_rate: rate: {}, xtal: {}, rsamp_ratio: {}",
            rate, inner.deref().borrow().xtal, rsamp_ratio
        );
        let real_resamp_ratio = rsamp_ratio | ((rsamp_ratio & 0x08000000) << 1);
        info!("real_resamp_ratio: {}", real_resamp_ratio);
        let real_rate = (inner.deref().borrow_mut().xtal as u128 * 2_u128.pow(22)) as f64 / real_resamp_ratio as f64;
        if rate as f64 != real_rate {
            info!("Exact sample rate is {} Hz", real_rate);
        }
        // Save exact rate
        inner.deref().borrow_mut().rate = real_rate as u32;

        // Configure tuner
        self.set_i2c_repeater(true)?;
        let val = if inner.deref().borrow().bw > 0 { inner.deref().borrow().bw } else { inner.deref().borrow().rate };
        let r = inner.deref().borrow().rate;
        inner.deref().borrow_mut().tuner.set_bandwidth(&self.handle, val, r)?;
        self.set_i2c_repeater(false)?;
        if inner.deref().borrow().tuner.get_info()?.id == TUNER_ID {
            self.set_if_freq(inner.deref().borrow().tuner.get_if_freq()?)?;
            let freq = inner.deref().borrow().freq;
            self.set_center_freq(freq)?;
        }

        let mut tmp: u16 = (rsamp_ratio >> 16) as u16;
        self.handle.demod_write_reg(1, 0x9f, tmp, 2)?;
        tmp = (rsamp_ratio & 0xffff) as u16;
        self.handle.demod_write_reg(1, 0xa1, tmp, 2)?;

        self.set_sample_freq_correction(inner.deref().borrow().corr)?;

        // Reset demod (bit 3, soft_rst)
        self.handle.demod_write_reg(1, 0x01, 0x14, 1)?;
        self.handle.demod_write_reg(1, 0x01, 0x10, 1)?;

        // Recalculate offset frequency if offset tuning is enabled
        if inner.deref().borrow().offset_freq != 0 {
            self.set_offset_tuning(true)?;
        }
        Ok(())
    }

    pub fn set_tuner_bandwidth(&self, mut bw: u32) -> Result<()> {
        let inner = self.i.lock();
        bw = if bw > 0 { bw } else { inner.deref().borrow().rate };
        self.set_i2c_repeater(true)?;
        let r = inner.deref().borrow().rate;
        inner.deref().borrow_mut().tuner.set_bandwidth(&self.handle, bw, r)?;
        self.set_i2c_repeater(false)?;
        if inner.deref().borrow().tuner.get_info()?.id == TUNER_ID {
            self.set_if_freq(inner.deref().borrow().tuner.get_if_freq()?)?;
            self.set_center_freq(inner.deref().borrow().freq)?;
        }
        inner.deref().borrow_mut().bw = bw;
        Ok(())
    }

    pub fn set_testmode(&self, on: bool) -> Result<()> {
        match on {
            true => {
                self.handle.demod_write_reg(0, 0x19, 0x03, 1)?;
            }
            false => {
                self.handle.demod_write_reg(0, 0x19, 0x05, 1)?;
            }
        }
        Ok(())
    }

    pub fn set_direct_sampling(&self, mut mode: DirectSampleMode) -> Result<()> {
        let inner = self.i.lock();
        if inner.deref().borrow_mut().force_ds {
            mode = DirectSampleMode::OnSwap;
        }
        match mode {
            DirectSampleMode::On | DirectSampleMode::OnSwap => {
                self.set_i2c_repeater(true)?;
                inner.deref().borrow_mut().tuner.exit(&self.handle)?;
                self.set_i2c_repeater(false)?;

                // Disable Zero-IF mode
                self.handle.demod_write_reg(1, 0xb1, 0x1a, 1)?;

                // Disable spectrum inversion
                self.handle.demod_write_reg(1, 0x15, 0x00, 1)?;

                // Only enable in-phase ADC input
                self.handle.demod_write_reg(0, 0x08, 0x4d, 1)?;

                // Check whether to swap I and Q ADC
                if matches!(mode, DirectSampleMode::OnSwap) {
                    self.handle.demod_write_reg(0, 0x06, 0x90, 1)?;
                    info!("Enabled direct sampling mode: ON (swapped)");
                } else {
                    self.handle.demod_write_reg(0, 0x06, 0x80, 1)?;
                    info!("Enabled direct sampling mode: ON");
                }
                inner.deref().borrow_mut().direct_sampling = mode;
            }
            DirectSampleMode::Off => {
                self.set_i2c_repeater(true)?;
                inner.deref().borrow_mut().tuner.init(&self.handle)?;
                self.set_i2c_repeater(false)?;

                if inner.deref().borrow().tuner.get_info()?.id == TUNER_ID {
                    // tuner init already does all this
                    // self.set_if_freq(R82XX_IF_FREQ);
                    // Enable spectrum inversion
                    // handle.demod_write_reg(1, 0x15, 0x01, 1);
                } else {
                    self.set_if_freq(0)?;

                    // Enable in-phase + Quadrature ADC input
                    self.handle.demod_write_reg(0, 0x08, 0xcd, 1)?;

                    // Enable Zero-IF mode
                    self.handle.demod_write_reg(1, 0xb1, 0x1b, 1)?;
                }
                // opt_adc_iq = 0, default ADC_I/ADC_Q datapath
                self.handle.demod_write_reg(0, 0x06, 0x80, 1)?;
                info!("Disabled direct sampling mode");
                inner.deref().borrow_mut().direct_sampling = DirectSampleMode::Off;
            }
        }
        self.set_center_freq(inner.deref().borrow().freq)?;
        Ok(())
    }

    pub fn set_offset_tuning(&self, _enable: bool) -> Result<()> {
        // RTL-SDR-BLOG Hack, enables us to turn on the bias tee by clicking on "offset tuning"
        // in software that doesn't have specified bias tee support.
        // Offset tuning is not used for R820T devices so it is no problem.
        #[cfg(feature = "rtl_sdr_blog")]
        self.set_gpio(0, enable)?;

        // TODO: implement the rest when we support tuners beyond R82xx
        Ok(())
    }

    pub fn set_bias_tee(&self, on: bool) -> Result<()> {
        self.set_gpio(0, on)
    }

    #[allow(dead_code)]
    pub fn get_xtal_freq(&self) -> u32 {
        let inner = self.i.lock();
        let r = (inner.deref().borrow().xtal as f32 * (1.0 + inner.deref().borrow().ppm_correction as f32 / 1e6)) as u32;
        r
    }

    pub fn get_tuner_xtal_freq(&self) -> u32 {
        let inner = self.i.lock();
        let r = (inner.deref().borrow().tuner_xtal as f32 * (1.0 + inner.deref().borrow().ppm_correction as f32 / 1e6)) as u32;
        r
    }

    #[allow(dead_code)]
    pub fn set_xtal_freq(&self, rtl_freq: u32, tuner_freq: u32) -> Result<()> {
        let inner = self.i.lock();
        if rtl_freq > 0 && !(MIN_RTL_XTAL_FREQ..=MAX_RTL_XTAL_FREQ).contains(&rtl_freq) {
            return Err(RtlsdrErr(format!(
                "set_xtal_freq error: rtl_freq {rtl_freq} out of bounds"
            )));
        }
        if rtl_freq > 0 && inner.deref().borrow().xtal != rtl_freq {
            inner.deref().borrow_mut().xtal = rtl_freq;

            // Update xtal-dependent settings
            if inner.deref().borrow().rate != 0 {
                self.set_sample_rate(inner.deref().borrow().rate)?;
            }
        }

        if inner.deref().borrow().tuner.get_xtal_freq()? != tuner_freq {
            if tuner_freq == 0 {
                inner.deref().borrow_mut().tuner_xtal = inner.deref().borrow().xtal;
            } else {
                inner.deref().borrow_mut().tuner_xtal = tuner_freq;
            }

            // Read corrected clock value into tuner
            inner.deref().borrow_mut().tuner.set_xtal_freq(self.get_tuner_xtal_freq())?;

            // Update xtal-dependent settings
            if inner.deref().borrow().freq != 0 {
                self.set_center_freq(inner.deref().borrow().freq)?;
            }
        }
        Ok(())
    }

    pub fn read_sync(&self, buf: &mut [u8]) -> Result<usize> {
        self.handle.bulk_transfer(buf)
    }

    fn init_baseband(&self) -> Result<()> {
        // Init baseband
        // info!("Initialize USB");
        self.handle.write_reg(BLOCK_USB, USB_SYSCTL, 0x09, 1)?;
        self.handle
            .write_reg(BLOCK_USB, USB_EPA_MAXPKT, 0x0002, 2)?;
        self.handle.write_reg(BLOCK_USB, USB_EPA_CTL, 0x1002, 2)?;

        // info!("Power-on demod");
        self.handle.write_reg(BLOCK_SYS, DEMOD_CTL_1, 0x22, 1)?;
        self.handle.write_reg(BLOCK_SYS, DEMOD_CTL, 0xe8, 1)?;

        // info!("Reset demod (bit 3, soft_rst)");
        self.handle.reset_demod()?;

        // info!("Disable spectrum inversion and adjust channel rejection");
        self.handle.demod_write_reg(1, 0x15, 0x00, 1)?;
        self.handle.demod_write_reg(1, 0x16, 0x00, 2)?;

        // info!("Clear DDC shift and IF registers");
        for i in 0..5 {
            self.handle.demod_write_reg(1, 0x16 + i, 0x00, 1)?;
        }
        self.set_fir(DEFAULT_FIR)?;

        // info!("Enable SDR mode, disable DAGC (bit 5)");
        self.handle.demod_write_reg(0, 0x19, 0x05, 1)?;

        // info!("Init FSM state-holding register");
        self.handle.demod_write_reg(1, 0x93, 0xf0, 1)?;
        self.handle.demod_write_reg(1, 0x94, 0x0f, 1)?;

        // Disable AGC (en_dagc, bit 0) (seems to have no effect)
        self.handle.demod_write_reg(1, 0x11, 0x00, 1)?;

        // Disable RF and IF AGC loop
        self.handle.demod_write_reg(1, 0x04, 0x00, 1)?;

        // Disable PID filter
        self.handle.demod_write_reg(0, 0x61, 0x60, 1)?;

        // opt_adc_iq = 0, default ADC_I/ADC_Q datapath
        self.handle.demod_write_reg(0, 0x06, 0x80, 1)?;

        // Enable Zero-IF mode, DC cancellation, and IQ estimation/compensation
        self.handle.demod_write_reg(1, 0xb1, 0x1b, 1)?;

        // Disable 4.096 MHz clock output on pin TP_CK0
        self.handle.demod_write_reg(0, 0x0d, 0x83, 1)?;

        Ok(())
    }

    pub fn deinit_baseband(&mut self) -> Result<()> {
        let inner = self.i.lock();
        // Deinitialize tuner
        self.set_i2c_repeater(true)?;
        inner.deref().borrow_mut().tuner.exit(&self.handle)?;
        self.set_i2c_repeater(false)?;

        // Power-off demodulator and ADCs
        self.handle.write_reg(BLOCK_SYS, DEMOD_CTL, 0x20, 1)?;
        Ok(())
    }

    fn set_sample_freq_correction(&self, ppm: i32) -> Result<()> {
        let offs = (-ppm * 2_i32.pow(24) / 1_000_000) as i16;
        self.handle
            .demod_write_reg(1, 0x3f, (offs & 0xff) as u16, 1)?;
        self.handle
            .demod_write_reg(1, 0x3e, ((offs >> 8) & 0x3f) as u16, 1)?;
        Ok(())
    }

    fn set_gpio(&self, gpio_pin: u8, mut on: bool) -> Result<()> {
        let inner = self.i.lock();
        // If force_bt is on from the EEPROM, do not allow bias tee to turn off
        if inner.deref().borrow().force_bt {
            on = true;
        }
        self.set_gpio_output(gpio_pin)?;
        self.set_gpio_bit(gpio_pin, on)
    }

    fn set_gpio_bit(&self, mut gpio: u8, val: bool) -> Result<()> {
        gpio = 1 << gpio;
        let mut r = self.handle.read_reg(BLOCK_SYS, GPO, 1)?;
        r = if val {
            r | gpio as u16
        } else {
            r & !gpio as u16
        };
        self.handle.write_reg(BLOCK_SYS, GPO, r, 1)?;
        Ok(())
    }

    fn set_gpio_output(&self, mut gpio: u8) -> Result<()> {
        gpio = 1 << gpio;
        let mut r = self.handle.read_reg(BLOCK_SYS, GPD, 1)?;
        self.handle.write_reg(BLOCK_SYS, GPD, r & !gpio as u16, 1)?;
        r = self.handle.read_reg(BLOCK_SYS, GPOE, 1)?;
        self.handle.write_reg(BLOCK_SYS, GPOE, r | gpio as u16, 1)?;
        Ok(())
    }

    fn set_i2c_repeater(&self, enable: bool) -> Result<()> {
        let val = match enable {
            true => 0x18,
            false => 0x10,
        };
        self.handle
            .demod_write_reg(1, 0x01, val, 1)
            .map(|_| ())
    }

    pub fn set_fir(&self, fir: &[i32; FIR_LEN]) -> Result<()> {
        const TMP_LEN: usize = 20;
        let mut tmp: [u8; TMP_LEN] = [0; TMP_LEN];
        // First 8 values are i8
        for i in 0..8 {
            let val = fir[i];
            if !(-128..=127).contains(&val) {
                panic!("i8 FIR coefficient out of bounds! {val}");
            }
            tmp[i] = val as u8;
        }
        // Next 12 are i12, so don't line up with byte boundaries and need to unpack
        // 12 i12 values from 4 pairs of bytes in fir. Example:
        // fir: 4b5, 7f8, 3e8, 619
        // tmp: 4b, 57, f8, 3e, 86, 19
        for i in (0..8).step_by(2) {
            let val0 = fir[8 + i];
            let val1 = fir[8 + i + 1];
            if !(-2048..=2047).contains(&val0) {
                panic!("i12 FIR coefficient out of bounds: {val0}")
            } else if !(-2048..=2047).contains(&val1) {
                panic!("i12 FIR coefficient out of bounds: {val1}")
            }
            tmp[8 + i * 3 / 2] = (val0 >> 4) as u8;
            tmp[8 + i * 3 / 2 + 1] = ((val0 << 4) | ((val1 >> 8) & 0x0f)) as u8;
            tmp[8 + i * 3 / 2 + 2] = val1 as u8;
        }

        for (i, t) in tmp.iter().enumerate().take(TMP_LEN) {
        // for i in 0..TMP_LEN {
            self.handle
                .demod_write_reg(1, 0x1c + i as u16, *t as u16, 1)?;
        }
        Ok(())
    }

    fn search_tuner(&self) -> Option<&str> {
        for tuner_info in KNOWN_TUNERS.iter() {
            let regval = self
                .handle
                .i2c_read_reg(tuner_info.i2c_addr, tuner_info.check_addr);
            info!(
                "Probing I2C address {:#02x} checking address {:#02x}",
                tuner_info.i2c_addr, tuner_info.check_addr
            );
            match regval {
                Ok(val) => {
                    // info!("Expecting value {:#02x}, got value {:#02x}", tuner_info.check_val, val);
                    if val == tuner_info.check_val {
                        return Some(tuner_info.id);
                    }
                }
                Err(e) => {
                    error!("Reading failed, continuing. Err: {}", e);
                }
            };
        }
        None
    }
}