1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
use super::assert_future;
use crate::future::{Either, FutureExt};
use core::pin::Pin;
use futures_core::future::{FusedFuture, Future};
use futures_core::task::{Context, Poll};
/// Future for the [`select()`] function.
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[derive(Debug)]
pub struct Select<A, B> {
    inner: Option<(A, B)>,
}
impl<A: Unpin, B: Unpin> Unpin for Select<A, B> {}
/// Waits for either one of two differently-typed futures to complete.
///
/// This function will return a new future which awaits for either one of both
/// futures to complete. The returned future will finish with both the value
/// resolved and a future representing the completion of the other work.
///
/// Note that this function consumes the receiving futures and returns a
/// wrapped version of them.
///
/// Also note that if both this and the second future have the same
/// output type you can use the `Either::factor_first` method to
/// conveniently extract out the value at the end.
///
/// # Examples
///
/// A simple example
///
/// ```
/// # futures::executor::block_on(async {
/// use futures::{
///     pin_mut,
///     future::Either,
///     future::self,
/// };
///
/// // These two futures have different types even though their outputs have the same type.
/// let future1 = async {
///     future::pending::<()>().await; // will never finish
///     1
/// };
/// let future2 = async {
///     future::ready(2).await
/// };
///
/// // 'select' requires Future + Unpin bounds
/// pin_mut!(future1);
/// pin_mut!(future2);
///
/// let value = match future::select(future1, future2).await {
///     Either::Left((value1, _)) => value1,  // `value1` is resolved from `future1`
///                                           // `_` represents `future2`
///     Either::Right((value2, _)) => value2, // `value2` is resolved from `future2`
///                                           // `_` represents `future1`
/// };
///
/// assert!(value == 2);
/// # });
/// ```
///
/// A more complex example
///
/// ```
/// use futures::future::{self, Either, Future, FutureExt};
///
/// // A poor-man's join implemented on top of select
///
/// fn join<A, B>(a: A, b: B) -> impl Future<Output=(A::Output, B::Output)>
///     where A: Future + Unpin,
///           B: Future + Unpin,
/// {
///     future::select(a, b).then(|either| {
///         match either {
///             Either::Left((x, b)) => b.map(move |y| (x, y)).left_future(),
///             Either::Right((y, a)) => a.map(move |x| (x, y)).right_future(),
///         }
///     })
/// }
/// ```
pub fn select<A, B>(future1: A, future2: B) -> Select<A, B>
where
    A: Future + Unpin,
    B: Future + Unpin,
{
    assert_future::<Either<(A::Output, B), (B::Output, A)>, _>(Select {
        inner: Some((future1, future2)),
    })
}
impl<A, B> Future for Select<A, B>
where
    A: Future + Unpin,
    B: Future + Unpin,
{
    type Output = Either<(A::Output, B), (B::Output, A)>;
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let (mut a, mut b) = self.inner.take().expect("cannot poll Select twice");
        if let Poll::Ready(val) = a.poll_unpin(cx) {
            return Poll::Ready(Either::Left((val, b)));
        }
        if let Poll::Ready(val) = b.poll_unpin(cx) {
            return Poll::Ready(Either::Right((val, a)));
        }
        self.inner = Some((a, b));
        Poll::Pending
    }
}
impl<A, B> FusedFuture for Select<A, B>
where
    A: Future + Unpin,
    B: Future + Unpin,
{
    fn is_terminated(&self) -> bool {
        self.inner.is_none()
    }
}